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Analytical Approach to the Short-range Wakefield between Two
Conducting Plates Gener ated by a Sub-relativistic Beam Bunch

Haipeng Wang"
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Abstract

The muon cooling channe design requires a full space charge and wakefield effects
included in the beam dynamic simulation. The worst problem may happen when the sub-
relativistic (S=v/c<1) muon beam bunch isinsde of RF cavities. To understand the short-
range wakefield and crosscheck with MAFIA simulation, an analytical approach by
image charge algorithm has been developed for the geometry of two parallel planner
conductors. This paper gives all details of physics and mathematics in the
electromagnetic field generation, propagation, reflection and causdity issue. The
calculated wakefield results have an excellent agreement with MAFIA simulation within
abroadrange of S [5].

1. Introduction

Current muon ionization cooling design for a muon collider or a neutrino factory requires a full space
charge and wakefield effects included in the beam dynamic simulation. The worst problem may exist when
the sub-relativistic muon beam bunch (S=vic<1) isinside of RF acceleration cavities. The baseline design
for the cavity shape is to close the cavity irises by the low Z (which gives less muon scattering) metal
conductors (which gives higher shunt impedance). The choice is ether the beryllium foil window type [1]
or the thin tubes grill type [2]. Whichever is closed to a pillbox type cavity. The transverse space-charge
force of the dense beam may reduce the cooling effect. The wakefield may also act on the bunch tail itself.
However, this effect has not implemented in the ICOOL [3] simulation yet, because there was a
fundamental problem hasto solve. That ishow to calculate the Coulomb field and wakefield when the sub-
relativistic beam bunch is still insde of RF cavity. MAFIA codes [4] are able to do the job, but exports
only believe the wakefield calculation for the ultra-relativistic beam (£=1) and in the long-range when the
beam bunch aready left the cavity. There is no any analytical tool suitable to crosscheck the MAFIA
simulation in short-range for the sub-relativistic beam [5]. Under this motivation, we found the image
charge algorithm is very simple in mathematics and very clear in physics and is a very powerful and
interesting tool. The short-range wakefield is dominated by the path length of first a few reflected waves
within the cavity. Current 805 MHz beryllium window cavity has a gap disance 7.821cm and a radius
14.28cm, so the short-range waves only depend on the gap distance and reflect between two planner walls.
It is a perfect example for exploring the short-range wakefield problem. This development is based on the
geometry of two parale plane conductors and the foundation works of Chao [6][7], Carron [8] and
Maresca[9].

2. Sub-relativistic Wavesin One-plane M odel
Electromagnetic fields generated by a sub-relativistic point charge moving out from an infinite large,

planar and perfect-conducting plane can be deduced from Carron’s note [8] in cylindrical (r,@ 2
coordinates:
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The positive source particle moves on z-axis and out of conducting surface a z=0, with a relative

velocity of B=vic, cisthespeed of light. y = ]/,/1— B? .

All fields are independent in azimuthg Each field component consists of three terms. The terms with the
Heaviside step function u(ct-00) represent Coulomb fields generated by a positive source charge and a
negative image charge. Two charges are moving in opposite direction relative to the mirror plane. The third
term with the Delta function d(ct-J) represents the radiation field. We note that the radiation field only
rides on the spherical wavefront, and the Coulomb field resides between the conducting plane and the
wavefront. The wavefront originates at (r, z)=(0, 0), with the radius of ct, and expends homogeneoudly in
the speed of light c. The charge particle moves in the velocity of Bc, behind the radiation wavefront.
Coulomb field surrounds the source particle and propagates with it, but its scope expends with the radiation
wavefront. We call the electromagnetic field in term of Coulomb and radiation. Because the Coulomb field
has the character of field strength e (or b) 0 1/L% The L is the distance between the source and the field
point interested. The radiation field has e (or b) O 1/L. Asthe particle approaches in réativistic (f=1), the
Coulomb field vanishes and only the radiation field Ieft. The charge particle isjust riding on the wavefront.
In opposite, as the particle stays in static (£=0), the radiation and magnetic fields disappear. Only Coulomb
field l€eft, isin the form we knew.

In principle, a charge particle could not move out or move in a perfect conductor due to the image charge
effect. In other words, the image current in the conducting plate is infinite high when the source charge is
touching the plane. There isarepelling force to prevent the source particle moving to the interception point.
In reality, the conductivity of the conducting plate is always finite. Also the source particle moves with a
finite energy. If the conducting plate is a thin wall, an energized particle can always pass through the
conductor plane. In the mathematics, the image charge method aways assumes the eectric mirror is a
perfect conductor plane. There is a singularity at the interception points. We can avoid this problem by
excluding these points in the field integration.

3. Sub-rélativistic Wavesin Two-plane M odel
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We now consider a point source charge moving between two conducting planes. Before the radiation
wavefront reaches the second conductor plane, there is no new physics from the one-plane model. The
information from the second plane has not received yet. After the wavefront strikes the second conductor
plane, anew two-plane model need to develop. There are three additional terms (physics points) to add into
Carron’ sfield expression (1)-(3).

1) A backward radiation when the source charge exiting out to the second plane.

2) A reflected wave first bounces back from the second conductor plate. As the spherica waves
propagated, multiple refection waves will be superimposed. The reflected waves can be represented by
the infinite numbers of image charges generated fields originated at different locations. Illustrated in
Fig. 1, we can use z+2ig to replace the z in Egs. (4)-(6) to represent the reflected Coulomb and forward
radiation fields. Use z-g-2ig to replace the z in Eq. (6) to represent the reflected backward radiation
fields. Here i=0, -1, +1, -2, +2.... The forward means the primary radiation wavefront is in +z
direction. The reflected waves can be either +z or —z direction. For example, the first reflected forward
radiation isin —z direction, and second reflected forward radiation isin +z direction. The sequence of
terms in i=0, -1, +1, -2, +2... dso represents the wave front appearance sequence between the two
conducting planes. For example, i=0isa primary wave. i=-1 isfirst reflected wave, and i=+1 is second
reflected wave. These wavefronts are generated at same time but originated at different z positions.
The separation of these originsis 2g. According to the new modifications, the s and s, become to s.
and s, the 00 becomes O, and 0;..

3) There is no Coulomb field emitted after the source particle left the second plane. So there is a
disappearance term attached to the Coulomb field expression.

Firgt snapshot in magenta—— — Second snapshot in blue

when sour ce chargeishere when sour ce chargeis here
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nd reflected — [\ primary

flected

///Third snapshot in red
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i=—1, backward — T T
\ =0, backward
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-4q -3¢ 29 9 0 g 29 3q 4q

Figure 1: Electromagnetic waves generated by a sub-reativistic charge moving through two conducting
plates. The wavefront pictures are taken at three different snapshots (in colors: first, magenta; second, blue;
third, red).
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z

Figure 2: Blow-up view of Fig.1 between two conducting plates.

Now the field expression can be written asin Egs. (7)-(9).

r " Qet-0 _ct+ 3
% SI+3 E‘(Ct |:||+)u(|:|0— Ct+,8)

203 (z+2ig) 5(ct-0.)
0.[0.% - B*(z+2ig)’] "
2[3 (z- g -2ig)
0.[0.%-B*(z-g-2ig)’]

0

e

N

3(ct 0.)

"EQI:II:IQPDDQ
L |

_9_
B

e

N

+2ig - fct z+2ig + [t
s’ s’

23 5
0,.[0,.° - B*(z+2ig)’]

2
2 o(ct g—Di_)

(Ct_DH)

0,.[0,.° - B*(z-g-2ig)°] ( B

R

1
‘Q
||M.§

4/31

0
t-0,)u(d, —ct+=
E‘(C 1 U( c +,8)D

I e

()

(8)



MUCOOL Note 0117 H. Wanq, Analytical Approach to the Short-range Wakefield....

S +L@(ct 0 u@, ~et+ )0
R ;

25 -
¢ 47T£0C z i+2 —,82(Z+2ig)2 o(ct—-0,,) B
D 0
+ 2 22ﬂ - N2 o(c _g_Di-) D
B 0.°-B°(z-g-2g) B F

Here g isthe distance between the two conducting planes.
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Now we want to use the normalized parameters and define:
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Use the rel ationship:
R, - B%(Z+2) =R*+(Z+2i)*1y*
RZ2-B%(Z-2-1)2=R*+(Z-2-1)2/y?

Substituting (14)-(19) in equation (7)-(9), we obtain
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In EqQ. (20), we brace out the terms in the early definition. The summations over all i terms take care of all
reflected fidds.

We now can see the dectric field profile “movies’ in Z-R coordinate generated by Mathcad. For all
plots, the arrow at each grid only represents the dectric field direction at that point. All arrows have same
length, so each electric field vector isnormalized at each grid. The left and right boundaries of the plot are
the positions of the first and second conducting planes. The source charge moves at a velocity of £=0.84. In
order to show the spherica wavefronts clearly the thickness of the wavefronts have been arbitrarily set into
a 1% of the gap distance.
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Figure 3: In this frame, at T=0.75/c, the red dot represents the positive source charge position.
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Electric vector plot at T=1.2/c

Figure 4. In thisframe, at T=1.2/c, the positive charge isjust striking the second conducting plate. The first
reflected wave has shown up, a negative image charge represented its source just cancels the positive image
charge crested at this point for a backward radiation wave. So there is no net image charge coming back
after this moment.
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Figure 5: In this frame, at T=1.5/c, Coulomb filed lost its information within the backward radiation
wavefront. All firg-reflected field lines have to return to second conducting plate through the backward
radiation field lines due to no image charge present here.
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Figure 6: In this frame, at T=2/c. backward radiation propagates to the I eft, left a field vacuum behind.
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Figure 7: In this frame, at T=2.5/c, second-reflected forward radiation wave and first-reflected backward
radiation wave have shown up. The Coulomb field has moved to up-left corner.
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Figure 8: In this frame, at T=3.5/c, only reflected radiation waves | eft.
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4. Green’sFunction of Wake-potential
So far, we have only worked on the point charge generated wakefields. A witness particle following the
source particle to see its wakefields to gain or lose energy is the wake-potential. The integration of the
wakefields calls Green’s Function of Wake-potential .

The longitudinal wake-potential is:
(r.9 = fe.(r.zt =255 23)
W, (I',S) = L =——)0Z
felhat="g

The transverse wake-potential can be expressed as.

Wd](l‘,s):j"%, (r,z,t:%)—ﬂcbq,(r,z,t:%)%jz (24)

As the conventiona definition, s>0 is the distance of witness particle behind source particle, s<0 is the
distance of witness particle ahead of source particle. wg>0 means a positive witness charge is accel erated,
Wy,<0 means decel erated. w,s5>0 means a positive witness charge is defocused, w;s< 0 means focused.

Now we define normalized wake-potential and normalized distance:

ﬂw S= E (25)
q g

W =

The normalized longitudina wake-potential is:

1
W, (R.S) = [E,(Z,RT = ZT;CS)dz (26)
0

The normalized transverse wake-potential is:

Z+S,0
)dZ (27)
g

When weintegrate thefield (26) and (27) analytically over the step functions and the Delta functions, there
isacausality issue. That is when the witness particle starts seeing the source particle generated fields, and
when the witness particle sops seeing the fields (Of course, you can do the integration numerically to avoid
the problem). In Appendix A, we demonstrated in detail how to do the integration analytically, in which,
gives more clearly physical picture of the causality issue. Since the algebra is very complicated, we only
show the result plots here. Interesting readers can refer to Appendix A for causdlity agorithm and
Appendix B for a Mathcad programming.

W;,(R.S) :Iélz ZRT :%S) - B, (ZRT =
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Figure 9: Short-range longitudina wake-potential generated by a positive point charge moving (with
[~Vvic=0.84) between two conducting plates. Here R is theratio of particle off-axis distance to the plate
gap.
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Figure 10: Coulomb and radiation wake-potentials shown separately for the case of R=0.1.
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Figure 11: Short-range transverse wake-potential generated by a positive point charge moving (with
L=vic=0.84) between two conducting plates. Here R is the ratio of particle off-axis distance to the plate

gap.

H2065, g Shulmrmge Transverse Wake Potential

a0 - i —

AW (0.1,8)
g — - 20 - i
W op(0.1,5) .
E W 01,8 T
o 1] h F—-
J ' el
H |

g b -'-/‘
=

o _

ey | | | | |
T -2 -1 o 1 1 3
3 g 3

Homnalized Bean Frame Dictance
— - Coulomwh, B=0.1
""" Radiation, F=0.1
—— Total, R=0.1

Figure 12: Coulomb and radiation wake-potentials shown separately for the case of R=0.1.
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5. Wake-potential of a Gaussan Bunch Beam:
Once we know the Green’s function of the wake-potential w(s), we can integrate it to get the wake-

potential for any given bunch distribution A(r,t). A convenient definition is a line charge distribution in
longitudina direction with atotal chare g

p(r,z,¢,t) = gA(fct - 2) = gA(s) (28)

For a Gaussian bunch with charge density distribution:

1 (s-s,)?
A = AZ T/ 29
=2 20 E @9

Here, o isthe beam RMS bunch length.

The wake-potential is given by

W) = [As-5)w,(5)ds = jexp%“ = 28I R, (s)as @)

Please pay attention here, the lower integration limit is -co, not a zero. That is the character of sub-
relativistic wakefield. The radiation field can be ahead of the moving particle. The wake-potentia has to
count that contribution.

Now we use normalized parameters defined above, but redefine the relative coordinate S normalized to
the bunch length o and ardative bunch length 3 normalized to the gap distance g.

S'EOE S(')E% Sis% ZE% (31)
The normalized longitudina wake-potentia for a Gaussian beam bunch is:

W, (R S) = J’exp% (5~ Sé_ Sy, (RS DS, (32)
The normalized transverse wake-potential for a Gaussian beam bunch is

W.(RS) = p% (S=8 =9y, (R s mos @

Then short-range wake-potential longitudina (32) and transverse (33) for different off-axis disgance R can
be computed by a third Mathcad program (see Appendix B for detail). Following plots show the examples
with S =5, 3=0.1918 case. It isasimulation of a bunched muon beam (with £=0.84, o=1.5cm) in an 805
MHz pillbox cavity (with radius=14.28cm, g=7.821cm) in the muon cooling cannel for amuon collider.
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Figure 13: Normalized longitudina wake-potential for a Gaussian beam bunch with $=0.84, s,=50, and
0/g=0.1918 for witness particle at different off-axis distances R=r/g. The charge density is multiplied by
10 in order to see the bunch shape in the graph scale.

The results Figs. (13) and (14) can be readily compared with MAFIA 3D and 2D codes or other
wakefield calculation code like ABCI (2D) [5]. The comparisons can also validate these codes in short-
range wakefield cal culation.

6. Conclusions

The image charge algorithm is a very powerful and fundamental tool to analytically calculate the short-
range wakes reflected between two conducting plates when a sub-relativistic beam passing through them. It
provides a key to understand physical picture of both space charge and wakefield problems when a short
beam bunch is insde of a RF cavity though we do not consider the beam dynamic with RF field here. It
shows a very good agreement with MAFIA and ABCI simulation codes in the short-range wakefield
calculations for a broad range of particle velocity [5]. Thisis the first analytical approach to validate those
wakefield calculation codes in such a short-range. We have also leaned that the frequency mode analysis
technique dready proofed the MAFIA wakefield calculation in long-range. This long-range so far
experienced is beyond the distance when the witness particle passes the 8o of Gaussian bunch if the bunch
starts from —50, or when the radial reflected wave reaches the witness particle, whichever is shorter. That
means MAFIA (2D or 3D) is a very trustful tool to simulate the wakefield or impedance problem in any
range for a complex beam component structure.

The image charge algorithm may not suit for a pipe-like sructure, in which the cylindrical radius is
much smaller than the longitudinal gap distance. In this case, the witness particle may first see the reflected
waves from theradial wall instead of planar wall. The current method only applies to the planar mirror but
not to the cylindrical mirror. The image charge method for the cylindrical mirror is very cumbersome.
Because a single image ring charge relative to a source ring charge on axis could not satisfy the boundary
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Figure 14: Normalized transverse wake-potential for a Gaussian beam bunch with £=0.84, =50, and
0/g=0.1918 for witness particle at different off-axis distances R=r/g. The charge density is multiplied by
10 in order to see the bunch shape in the graph scale.

condition on the cylindrical surface. Even with a stack of image ring charges, the dynamic wavefronts from
these image charges, when intercepting with the primary wavefront from the source charge on the mirror
surface, may not exactly cancel each other. Even with reasonable numbers of reflected wavefronts, the
mathematical expression for each wavefront is not as smple as in the point charge case. In this case, the
diffraction method [10] could be used, but works done so far are only for the relativistic particle in long-
range wakefield or impedance calculations. Anyhow, for a pipe like sructure and for the sub-rdativistic
particle, we can rely on the MAFIA numerical simulation.
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Appendix A. Causality Issuesin Wakefield I ntegration

When we analytically integrate (26) and (27), there are two Heaviside step functions u(cT-R..), U(Ry-
cT+1/p), and two Ddta functions JcT-R.), {cT-1/FR.) need to be taken care of. For the Coulomb filed
integration, we are dealing with the step functions, for example, you can only drop u(cT-R.) and u(R,-
cT+1/P) termsin the integration formula when the conditions cT-R.. > 0 AND Ry-cT+1/3> 0 sdtisfies. By
making transformation cT=(Z+S)/4, we found the field is nonzero value only when Z and Sarein certain
range. That gives the integration limits extra conditional constrains. From the analysis shown later, we
should find out that there are “open windows’ for the witness particle to see the source particle Coulomb
fields. Because the term cT-R., > O turnsthe field on, or the witness particle starts to see the retarded field
of the source particle. Thustheterm Ry -cT+1/5< 0i.e. cT-Ry-1/3> 0 turnsthe fidd off, or the field ingde
of the conducting planes varnished after the source particle left the second conducting plane. Thisis the
general causality issue and concept we discussed about.

Let’swork on the appearance term, by solving the inequality:
cT-R, >0 (AD)

Thediscriminant is

always
I~

A= 45%5—202 +R—ZEg 0 (A2)
0 y o

We got the solutions:

o_ .. . RO . .
Z>y* 2% -9)+B,|(s-2) +7DE Z,(S,Ri) ie Z>Z,(SRi) (A3)
E E

OR
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o_ .. v RO . .
Z<yﬁﬂﬂﬁ—$—ﬂ/@—ZY+;ZDEZASR@ ie Z<Z,(S,R)i) (A4)
E E

Remember the transformation

always
cT:Z;S 2y0 (A5)

We can define the
Z,(S)=-S (A6)

The (A5) means Z>Zy(S). The functions of Z;(SR)i), Z:(SRi) and Zy(S) can be drawn in a Z-S plot by
Mathcad in Figure 15. We can conclude that Z,(SR,i) does not have any physical meaning. That applies to
any Randi.

Z-3 Plot
RE:2) T ; ; : | |
., ™~
9] 5 S §
\ ~

. i
Z08,0,-13 T
_ =,
E1(5,1,-1) T
— 05— T -
E4(5,0,-1) T
— e
E405,1,-1) e

[ 0
I3 -
—

I, e
— s T .

-15

SLETL,
- |

| | | 1 | | 1
-1 -0.a 0 05 1 15 2 235 3

e g EN

i
Figure 15: Work on the Z-S plot to determine the branch limit on appearance term (i=-1, $=0.86, R=0 or 1).

Let’swork on the disappearance term, by solving the inequality:

1
_—CcT+=>0 (A7)
i B

Thediscriminant is
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B , , R2 Iways
A=4p3 + 7 0 (A8)

We got the solution:

Z.(S,R)=1-Sy? - By\/S?y* +R® <Z <1-Sy*+ By,/S?y* +R* =Z,(S,R)
e Z,(SR)<Z<Z,(SR) (A9)
Remember that the backward radiation only happens after the source particle exiting the second plate. So

Z+S _ 1
= >

cT (A10)
B B

We can define

Z,(S)=1-S (A11)

The functions of Zs(SR), Zs(SR) and Z1o(S) can be drawn in a Z-S plot by Mathcad in Figure 16. We can
conclude that Zs(SR) does not have any physical meaning either. That appliesto any R.

161, 2:8 Plot

171,

Figure 16: Work on the Z-S plot to determine the branch limit on disappearance term (3=0.86, R=0 or 1).

Remember that we are only interested in the fields between the two conducting plates, i.e. Z=0 to 1 range.
We now define:

Z,=0 (A12)

18/31



MUCOOL Note 0117 H. Wanq, Analytical Approach to the Short-range Wakefield....

z, =1 (A13)

On the Z-S plat, let’s work on the solution areas for the appearance term and disappearance term. We
have found only functions Z;(SR;i), Zs(SR,i) have physical meanings. Because any radiation wavefront
shown between the conducting planes is only half sphere. In order to see the Coulomb field within the
forward radiation wavefront and beyond backward radiation wavefront, the witness particle is always in
favor of +Sside. That means the witness particle behind the source particle is always easy to see the most
portion of Coulomb field left behind source particle. So we only take (A3) and (A9, right) for the solution.
However, for asmdl Sor R, the Z;(SR,i) gill can be on —S side. Because the radiation can catch the slow
witness particle before it moves out of second plane.

For the appearance terms, the interception points between Z; and Z;(SR,i) can be obtained analytically
by solving Z;(SRi)=0:

S, (R B.i) = B4i? +R? (A14)

The interception between Z, and Z;(SR)i):

S, (R B,i)=-1+ £,/(2 +1)* +R® (A15)

For the disappearance terms, the interception between Z; and Zg(SR) can be obtained analytically by
solving Zs(SR)=0:

Si(R B) =1+ BV1+R? (A16)
The interception between Z, and Zg(SR):
Si(R.£) = [R (AL7)

The condition (A3) AND (A9, right) requiresto find acommon areain Z-Splot between the lines from Z;
to Zgin Sand from Z3to Z,in Z. The Figure 17 shows this common area for 4=0.86 example, an “open
window” for witness particle to see the Coulomb field in source term (i=0). At the—Sside of Z-Splat, there
isapossibility to have awindow area, like Figure 18, 3=0.4 case.
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187l
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Zs LM 05
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M OZg51 g
I3
Iy -0 -

S, = BJ4i* +R?
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-3 -a.5
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Figure 17: The “open window” in Z-S plot for £=0.86, i=0.

From Figures 17, 19 and 20, we can see that asthe ||| goesup, i.e i=0, -1, +1, -2, +2..., thewindow area

becomes smaller and smaller. After acertain |I| value, the window disappears. The condition for the
window disappearance is when:

S5 >S, e

BN4i? +R? >1+ B1+ R?

(A18)
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10, Z-3 Flot

(50,00
ZySL0) 05)
(5,00

MOZg8,10 g

I3

Iy -0 -

-3 -a.5 -2 ]

Figure 18: The “open window” in Z-Splot for 5=0.4, i=0.

The solution of the (A18) is:

[ 2
|i|>1\/1+i2+—2 1+R (A19)
2 B B

From (A19), we can see that as the S decreases, or as the source particle becomes more static, the |i
requires to increase. That means the window numbers seen by the witness particle becomes larger, or the
witness particle sees more reflected gtatic fields. When the off-axis distance R increases, the window
numbers becomes larger too.

Next, we are going to determine the window dimensions. That is to determine the integration low and
high limitsfor (26) and (27).

The integration limits can be divided into different areas. When

S.<S, ie —1+B{(+1)°+R* <R (A20)

AND

S<S,<S, ie BRSPVAZ+R? <1+ BV1I+R? (A21)

satisfied, the integration limits becomes three areas. The first areais from Z; to Z,=1. The second areais
from Z; to Zs. Thethird areais from Z;=0t0 Z.
The solution for (A20) AND (A21) are
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2 +1 < —VlJr'BZ'BR (A22)

Z-3 Plot

RE:2) T

Z08,0,-13

Z108.1-1) s

zsfé,u)

Bl EZgl5,1) 0
I3
Iy -05 -
= |& _
=g/ _
1871,
-9 | | | | | | | | | | |
-3 Y -2 -13 -1 03 0 03 1 13 2 25 3
REN g ER

z

Figure 19: The “open window” in Z-S plot for 5=0.86, i=-1.
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Figure 20: The “open window” in Z-S plot for 5=0.86, i=1.

22/31



MUCOOL Note 0117 H. Wanq, Analytical Approach to the Short-range Wakefield....

AND

(A23)

+ R2

i< 1\/1+i2 $ IR
B B

We can see that when $3,=S;¢, i=0, which isthe special case (two areas) of three areas solution.

When the (A20) changesthe sign direction, that is

S,.>S, ie -1+B{J@2+)*+R* >R (A24)

AND (A21) conditions satisfied, the integration limits reduced into two areas. The first areais from Z; to
Zs. The second areais from Zz=0to Z.

Theintegration limits or window dimensions for Coulomb fields can be summarized in Table 1.

Sow Shigh Zow | Znign Conditions

ﬂ«ﬁ(Zi +1)2 + R2 -1 'GR Zl L ‘ZI +:us \/1+ﬁ2m AND

R B4 2+ R? Z, Ze
ot b L B0E

1+ —+
B4i7 + R? p+rE+1 | ° | Zg B

X" 7 o7 oo
ﬂ 4—|2 + R2 Zl ZG 2|+:u>14:‘fﬂ? AND
R R e

1+—+ 3

/ 2

No Windows Appear M >1\/1+i2+ﬂ
2y B /4

Table 1: "Open window" dimensions of witness particle to see the source particle Coulomb field in the Z-S

0 0
plot. Here 7 — 2 qapei-5)+ g [(s-2i) + 20N Z, =1-5y* + B[Sy +R* -
= s

Now we can integrate the Coulomb field term by term.

The Coulomb wake-potential is

j e . .
W, (R,9) =.Z Fic(Zngn) = Fic (Ziow) See condition in the shaded areain Table 1 (A25)

i==]

* X istheroot of the equation Z, = Z.
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. 1  2J1+R?
Here | :|ntegerB1\/l+—2+—§ (A26)
S
That means you do not need to calculate so many termsfor afast particle.
And F;c(2) istheintegration function of Coulomb field Ezc, and it was found out
5  2-s 1 H
Fie(2)=y Z+ (A27)

U
R2+y2(S—2i)2:% 2y2\/R2+y2(22+S+2i)2§

The radiation fields (forward and backward) are just one-time contribution to the wake-potential at their
wavefronts. The integration over the radiation fields is similar to but simpler than the Coulomb fields. We
can solve the forward radiation wavefront position Z; by putting equa sign into (A1) and getting

. a_ .. ., R?O
Z,(S,Ri) = y* (2B —S)+ﬁ1/(8—2|)2+—2D (A28)
B y B

OR

. a_ .. ., R*O
Z,(S,Ri) = y* 2B —S)—ﬁ,/(8—2|)2+—2D (A29)
B v B

We know that only Z;(SR,i) has aphysical meaning.
In asimilar way, we can solve the backward radiation wavefront position Z; by

1_

cT-—--R_=0 (A30)
B
We get
. 0 1 . ., R*O
Z,(SRi)=-y*[8-—+2B% - B.[(S+2)* +—[O (A31)
gy V' B

OR

0 2]
ZB(S,R,i)z—yzgs—%+2,82i+,8 /(S+2i)2+%g (A32)

In asimilar way to work on the Zs(SR), from Figure 21, we can rule the Zg(SR,i) out , which does not have
any physical meaning.
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Itisobvioudy that Zg(SR,0)=Z5(SR) and Z;(SR,0)=Z4(SR). So Z;(SR;i) isthe backward radiation
wavefront positionsin general for any Rand i.

The interception between Z;(SR,i) and Z;=0 can be found

Sy =1+ B4+ +1+ R’ (A33)
The interception between Z;(SR,i) and Z,=1 can be found

Sy = BVR’ +4i° (A34)

1o, Z-3Plot

]
e
e
!
1
205.0,-19 —
—_— T~
208,1,-1) -
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ol5.0,-1 .
— e
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B 0
7 T

-05 -

SLETL,

- -25 -2 -Ll3 -1 -0 0
RER g ER

Figure 21: Work on the Z-S plot to determine radiation wavefront position. In this example, 5=0.86, i=-1.

always

=
We can see that S, (R, B,i) = 0. That means the witness particle ahead of the source particle could

not see any backward radiation. That is because when the backward radiation generated, the witness
particle already left the second plate. The radiation wavefront positions can be summarized in Table 2.

Theradiation wake-potentid is:

DCD//F(Zl) if ,8\/(2|+1)—+R2 1< S< B4i? +R2D
Wir(RS) =0 @,,(2,) if BV4? +R2<S<,8\/(2I+1)—+R2 (A35)

[ Others [

Here @,(2) istheintegration function of forward radiation field Ez.
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1
D, (2) =~ (A36)
':‘“w/R2+(Z+2|)ZE? +(Z+2')/ Z +72i |
,3 JR? +(Z +20) ‘
And ®,5(2) isthe integration function of backward radiation field Ezg.
0 2
®,0(2) = 2R L (A37)

2 _
& R+ (-2 -1y ke +@-2-) z-2i-1 |
EQ / s JR+(z-2-17

Y ou do not need so many terms to cal cul ate short-range radiation potentials either. A smple way to
estimate it isto look at how many forward radiation and its refl ection wavefronts have shown up between
the parallel plates within the defined Srange. Since the forward radiation always happens first, though its
reflections may come later than the backward radiation, the forward radiation aways starts with i=0 wave
first. Werequire that

S=S,, ie S= 6,2 +1)*+R* -1 (A39)

We got

[ sl Es—ﬂé -R? L (A39)
2\H B 2

SOW Shigh Zwavefront hBE
B2 +1)2 +R? -1 B /—4i 2 R Z, Forward radiation
2 2 : 2 2 Z
pN4i" +R By(@2+])"+R 7 Backward radiation

Others No radiation can be seen

Table 2: Radiation wavefront positions. Here 7 2 E{Zﬁzi _9+p /(S—Zi R? E
2
B Vv g
O 2 []
= S- L 428i-p (S+2i)2+52D'
ilNs ve

Thetotal longitudinal wake-potential isthe sum of the Coulomb and radiation potentials.

W, (R S) =W, (R ) +W,: (R S) (A40)
In asimilar way, we can get total transverse wake-potentia

W, (R,S) =W (R S)+W(RS) (A41)
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i o ,
W (RS)= Z Foc (Zhign) = Foc (Ziow) Seethecondition intheshaded areain Tablel  (A42)

E1\/12\/W

Here | =integer— 1+—+—H (A26)
ARV

And Frc(2) is the integration function of Coulomb field E -8By, and it was found out

» .
F (@)= @ R @+ pyez+s+2) f e
[R2+y (s- 2|)2]/ 2R(R? +y?(2z +S+2i) B
DCDDF (Z) it By(2i+1)*+R*-1<S< BV4i* +R? D
Wr(RS) =0 & ,(Z,) if BVA?+R*<S<By(2i+1)%+ R2 (A44)
B Others [
Here @(2) istheintegration function of forward radiation field E.r- /B
= Z+2 1
P (2) = Z 2R E = H (A45)
+(Z+2|)/ [=VR? +(Z +2i) _ Z+2i |
,3 \R? +(Z +2i)? ‘
And @5(2) istheintegration function of backward radiation field E.g-/B .
: 2R H z-2-1 B 1 (Ad6)
P (2) = & .
+(z 2i - 1)/ O5JR? +(z -2 -1) z-2-1 |
\/Rz +(Z-2i-1)7|

Appendix B. A Mathcad Program for Wake-potential Calculation

Short-range Wake-potential Produced by a Sub-relativistic Gaussian Bunch Passing
through Two Parallel Conducting Plates (Green Function Integrated by Analytical

Formulas).
H. Wang, 04/10/2000

1. Longitudinal Coulomb:

B :=0.8¢
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1
y =
1- g2

2 2 2 R2

Z (R,S,i) =y* (2:8%i= S +B- [(S= 24) —
Y

ZgRS)=1- Sy + By Ay + R

. 1 2i-S
F”Ci(Z,R,S,I) A + VA

1.5.
2-y2-JR2+y2-(2-Z+S+2-i)2 [R+y2(s-2i)]
Wica(R.S.D) = |Fici(L.R.S,)) - Fici(Z 1(R.S.1), R, S, i) if B-q/(Z-i+1)2+R2—1SSSB-R
FiicilZ 6(R.S).R.S.i) = Fycj(Z 1(R.S,1),R.S,i) if B-R<S<P: 4+ R

. o 2 2 2
FiicilZ6(R.S).R.Si) = Fc(O.R,S,i) if B4/4i"+R <SBA1+R +1

0 otherwise

X(R,i) = | %2
root(z 1(Rx,1) = Z g(R,X) ,x)

W cAR.S1) 1= |Fci(Z o(SR).R.Si) - Fici(Z (R S1), R, S)i) if X(R,))SSSB A4+ R

. o 2 2 2
Fiici(Z6(R.S).R.Si) = Fc(O.R,S,i) if B4/4i"+R<SPA1+R +1

0 otherwise

2
. 1 1 1+ R
W (R S) = fie-round!|>: 14— 42Nt

2
B

W0

for i0-j..]

WeW+ [Wycy(R.S,D) if ‘Z'i-l—l\_m
B

W cAR,S,i) otherwise

2. Longitudinal Radiation:
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2
ZAR,S)i) =-y" 2-52-i+s_i2_ B (s+2-i)2+52
Y Y
S2BR 1
® F(Z,RS)i) 1= —177 Ty
4/R2+(Z+2-i)2-[R2+—(Z+22")] T
y NR+(Z + 2i)?
o 28R 1
() ”Bi(Z,R,S,I) = :

1 Z-2i-1

. 2
SR+ (2 2i 1)2-[R2+w1

g JR2+ (Z-2i-1)°

W E(RS1) = | ® 452 (R S),RS,i) if Bl(2i+1)°+ R~ 1SSSp o474 R
0 otherwise
W gi(R.Si) = [® 5i(Z AR S,) R.S,i) if B4 4 RSB A (214 1)2+ R
0 otherwise
7
W R(RS) = Y W (RS + W g(R. S.i)
i=-7

3. Longitudinal Total:

W ”(R,S) =W "C(R,S) +W ||R(R’S)
4, Transverse Coulomb:

RZ 14 gy 2z sr20)

FucfZ.R.S,) =

2 ] 1.5
v-[R2+v (S- 2-.)2] 2-R-JR2+y2-(2-Z+ S+ 240)?
W rc(RSI) = |Fuc LRSi) - Fyci(Z 1(R SR S,i) if B-4f(2-i+ 1)%+ R? - 1<S<B-R
Firci(Z6(R SR Si) - Fyuci(Z 1(RS,),R,S,i) if B-R<S<B- 4% 4 R

. N .2 2 2
FtrCi<26(R,S),R,S,|>—FtrCi(O,R,S,l) if BAl4i"+R<SSBA1+R +1

0 otherwise
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W rc4RSi) = |Fuci(Z o(SR).R.S,i) = Fyrei(Z (R, S).R.S)i) if X(Ri)<SSB- 424 R

Fuci(Z6(RS).RS\i) = Fyc(O.RS,) if B- 4% 4 RP<SSBA1+ R +1

0 otherwise

2
W, (R S) = |jeround L. |14 L 4 2NEER
trC > >
B
W0
for i0-j..j

WeW+ [Wicy(R.S0) if \2_i+1‘_m
B

W cAR,S,i) otherwise
w

5. Transverse Radiation:

® yRZ RS E PR ZtZ ‘B]' Zl-|—2i
R2+(Z+22'|)] A,R2+(Z+2.i)2 PR
I y NR+(Z + 2i0)?
o yg(zZRS) = 2PR | 2721 gl !
2 (Z—2-i—1)2 2 2 1 Z-2i-1
Ry— — 7 R+(Z-2i-1) E_
I y? JR2+(Z—2-i—1)2
W r(RS1) 1= [© y5i(Z 1(RS).RS) if B(2i4 1)+ R - 1<5<p 4%+ R
0 otherwise
W yrgi(R. /i) 1= | ® 1gi(Z RS, R, S,i) if B4 <SSP A (2i 4 1)2+ R
0 otherwise
7
WR(RS) =] Y W (RS +W (R S.i)
i=-7

6. Transverse Total:
W (R, S) =W (R, S) + W (1Rr(R,S)

7. Normalized Longitudinal Wake Potential for a Gaussian Bunch:
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Sp=5 So=sg/0 Y :=0.191 >=0lg

2
W (R, S) =1 ex;{-w] W (RS1Z)dSy

2
CN(S) =2 -exp{_(s_so)

Tom

8. Normalized Transverse for a Gaussian Bunch:

2
W (R,S) =1 ex;{_m]-w i(RS1Z)dS,
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